spe2018logov4.png

SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Bioplastics and Renewable Technologies

Thermoplastic Elastomer Blend Exhibiting Combined Shape Memory and Self-Healing Functionality
Christopher Lewis, May 2020

Here we report on a polymer blend consisting of a soft-thermoplastic polyurethane (TPU) elastomer and a low melting temperature thermoplastic healing agent (Polycaprolactone, PCL) capable of repairing highly deformed cracks without the need for an external load. In this study, a blend containing 30wt% PCL (30PCL) was shown to exhibit two well-separated melting transitions thus enabling shape memory behavior. Moreover, upon heating to above PCL’s melting temperature the flow of PCL into an undeformed crack was shown to fill the crack void thus promoting self-repair. A combined healing mechanism relying on both shape memory and self-healing action was demonstrated. Through the simple action of mild heating (90C/30 minutes), fracture surfaces are brought into intimate contact through the action of shape memory recovery and subsequently healed. Healing efficiency was evaluated by comparing the tensile force restoration after healing of a highly deformed, notched sample to its behavior prior to notching. Here it was shown that the polymer blend exhibited full restoration of its originally mechanical integrity whereas the mechanical performance of pure TPU was only minimally restored (about 5%). This blend is based on thermoplastic ingredients and thus able to be converted using conventional melt processing. Applications of such blends can be extended to products prone to damage such as liner materials, protective coatings, sporting goods and shoe soles.

Upcycling Ocean Bound PET Waste Into Durable Materials
Peter Vollenberg, May 2020

Dealing with plastics waste is a major issue confronted by the society. Single use items from water bottles to plastic packaging are major contributors to the generation of plastics waste globally. Innovative upcycling technology can transform a plastic with limited applications and a brief useful life into a different, more-durable resin with expanded potential uses and an extended lifetime. In this way, upcycling can help strengthen the circular economy and can help reduce the impact of single-use plastic applications on the environment. Using propritary de-polymerization of recycled polyester, SABIC has introduced a more sustainable polyester products family containing up to 60% recycled materials. This new PBT and its compounds have similar purity and properties as virgin resin. Hence they are drop in for many virgin PBT or compounded products. Chemistry, properties, and application for these sustainable polyester materials will be discussed. In particular, the application of ocean bound based resin in Dell computer fan housing will be highlighted.

Trends in Bio-renewable Thermoplastics Elastomers
Krishna Venkataswamy, October 2010

Thermoplastic elastomers (TPEs) have been traditionally compounded and manufactured from raw materials based on fossil fuels. Current trends in marketplace abounds sustainability programs. TPEs are no exception to this trend. In a recent editorial, the authors stated “Through research and application, sustainability can evolve from a catchphrase to a societal one”. More than two decades ago the Brundtland Commission (formerly the World Commission on Environment and Development, WCED), deliberated sustainable development issue and gave a definition of sustainability: “Sustainable development meets the needs of the present without compromising the ability of future generations to meet their own needs.

Current Trends
Martin Vines, Ph.D., October 2007

Graphene is the thinnest known material and has the highest intrinsic strength of any material ever measured. We are posting an article to describe some of the interesting research on graphene and graphene-based polymer nanocomposites (GPNC) that is occuring. This article reviews how graphene is made, explain how single sheets can be dispersed in a polymer matrix to give plastics with interesting properties and where these works are being carried out.

Wood Plastic Composite
Prithu Mukhopadhyay, February 2006

Wood and plastic are best friends these days. They can be combined to give the aesthetics of wood with the added durability of plastic. Termed as wood/plastic composites - WPCs' are a relatively new family of thermoplastic composites based on wood-fibres and the commodity thermoplastics. The polymers used for WPCs' are the high volume, low cost, commodity thermoplastics - polyethylene, polypropylene and PVC.